Mean square deviation¶
The msd tool computes mean square deviation (MSD) using the Einstein
relation, based on the displacement of atom groups over time.
It supports:
MSD in 1D, 2D, or full 3D
interactive or scripted atom-group selection
PBC-aware trajectory processing (
NoJump)customizable time windows and sampling intervals
output to an XVG file
This tool is implemented in msd.py.
Overview¶
Mean square deviation (MSD) provides quantitative insight into:
diffusion behavior
chain mobility
local fluctuations
polymer dynamics inside and outside LLPS condensates
The Einstein MSD is defined as:
DROPPS uses MDAnalysis’ EinsteinMSD class with optional reduced dimensions.
The workflow of dps msd:
Load TPR + XTC (+ optional NDX)
Choose an atom group (via
--selectionor interactively)Convert time selection (ns) → frame indices
Apply
NoJumpto remove PBC-induced discontinuitiesRun the Einstein MSD calculation
Compute lag times (ns)
Write the MSD vs. lag time into an XVG file
Usage¶
dps msd -s run.tpr -f run.xtc -sel 0 -o msd.xvg
Specify MSD dimensions:
dps msd -s run.tpr -f run.xtc -sel 2 -t xy -o msd_xy.xvg
Arguments¶
Required¶
- -s, --run-input TPR¶
TPR file containing topology, atom positions, and time-step metadata.
- -f, --input XTC¶
Trajectory from which MSD is computed.
- -o, --output FILE¶
XVG file where the MSD vs time curve will be written.
Optional¶
Index file¶
Atom group selection¶
- -sel, --selection INT¶
Specify an index group for MSD calculation. If not given, group selection is performed interactively.
MSD type (dimensions)¶
- -t, --msd-type {xyz, xy, yz, xz, x, y, z}¶
Select which coordinate dimensions to include:
xyz: full 3D MSD (default)xy,yz,xz: 2D MSDx,y,z: 1D MSD
Time selection¶
- -b, --start-time INT¶
- -e, --end-time INT¶
- -dt, --delta-time INT¶
Times are specified in nanoseconds.
Converted to frame indices by:
start_frame, end_frame, interval_frame = trajectory.time2frame(b, e, dt)
Trajectory processing¶
NoJump transformation is always applied:
trajectory.Universe.trajectory.add_transformations(nojump.NoJump())
This ensures atomic trajectories are continuous (molecules are unwrapped) before MSD is computed.
Program Workflow¶
Load trajectory
trajectory = trajectory_class(run_input, index, input)
Determine frames
Start, end, and interval frames are computed from ns time input.
Select atom group
If --selection:
selection = trajectory.getSelection(f"group {args.selection}")
Otherwise:
all groups printed
user selects interactively
Initialize MSD engine
msd_run = MDAnalysis.analysis.msd.EinsteinMSD(selection, msd_type=args.msd_type)
Run MSD
msd_run.run(start=start_frame, stop=end_frame, step=interval_frame)
Results stored in:
msd_timeseries = msd_run.results.timeseries
Compute lag times
lagtimes = np.arange(msd_run.n_frames) * interval_frame * trajectory.time_step().value_in_unit(nanosecond)
Write output
write_xvg(output_filename, lagtimes, msd_timeseries,
title, xlabel="Lag time (ns)", ylabel="Mean square deviation")
Output Format¶
The XVG file contains:
Column 1: lag time (ns)
Column 2: MSD (nm**2)
Labels automatically include the selected group ID and MSD type.
Example output structure:
# Mean square deviation of group group0
@ xaxis label "Lag time (ns)"
@ yaxis label "Mean square deviation"
0.0 0.000
0.1 0.023
0.2 0.041
...
Examples¶
Compute full 3D MSD for group 0:
dps msd -s run.tpr -f run.xtc -sel 0 -o msd.xvg
Compute planar (xy) MSD:
dps msd -s run.tpr -f run.xtc -sel 1 -t xy -o msd_xy.xvg
Interactive selection:
dps msd -s run.tpr -f run.xtc -o msd_mass.xvg
Error Messages¶
“ERROR: No output file specified.”
You must specify --output.
“An exception occurred when trying to open trajectory file …” Trajectory or topology cannot be read.
Invalid selection
Errors may be raised by getSelection if the group does not exist.
Summary¶
dps msd provides a robust implementation of Einstein mean square deviation
for molecular trajectories. Features include:
1D / 2D / 3D MSD modes
PBC-corrected trajectories (
NoJump)flexible time-window selection
clean XVG output for further analysis
It is an essential tool for studying polymer mobility, diffusive behavior, and internal chain dynamics in LLPS simulations.